3.2.2 \(\int \frac {a+b \sec ^{-1}(c x)}{(d+e x^2)^2} \, dx\) [102]

3.2.2.1 Optimal result
3.2.2.2 Mathematica [A] (warning: unable to verify)
3.2.2.3 Rubi [A] (verified)
3.2.2.4 Maple [C] (warning: unable to verify)
3.2.2.5 Fricas [F]
3.2.2.6 Sympy [F]
3.2.2.7 Maxima [F(-2)]
3.2.2.8 Giac [F(-2)]
3.2.2.9 Mupad [F(-1)]

3.2.2.1 Optimal result

Integrand size = 18, antiderivative size = 739 \[ \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx=-\frac {a+b \sec ^{-1}(c x)}{4 d \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}+\frac {a+b \sec ^{-1}(c x)}{4 d \left (\sqrt {-d} \sqrt {e}+\frac {d}{x}\right )}-\frac {b \text {arctanh}\left (\frac {c^2 d-\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {c^2 d+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{4 d^{3/2} \sqrt {c^2 d+e}}-\frac {b \text {arctanh}\left (\frac {c^2 d+\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {c^2 d+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{4 d^{3/2} \sqrt {c^2 d+e}}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}} \]

output
-1/4*(a+b*arcsec(c*x))*ln(1-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^ 
(1/2)-(c^2*d+e)^(1/2)))/(-d)^(3/2)/e^(1/2)+1/4*(a+b*arcsec(c*x))*ln(1+c*(1 
/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(3/ 
2)/e^(1/2)-1/4*(a+b*arcsec(c*x))*ln(1-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d) 
^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(3/2)/e^(1/2)+1/4*(a+b*arcsec(c*x)) 
*ln(1+c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)) 
)/(-d)^(3/2)/e^(1/2)-1/4*I*b*polylog(2,-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(- 
d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(3/2)/e^(1/2)+1/4*I*b*polylog(2,c 
*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/(-d)^ 
(3/2)/e^(1/2)-1/4*I*b*polylog(2,-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2 
)/(e^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(3/2)/e^(1/2)+1/4*I*b*polylog(2,c*(1/c/x 
+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(3/2)/e 
^(1/2)+1/4*(-a-b*arcsec(c*x))/d/(-d/x+(-d)^(1/2)*e^(1/2))+1/4*(a+b*arcsec( 
c*x))/d/(d/x+(-d)^(1/2)*e^(1/2))-1/4*b*arctanh((c^2*d-(-d)^(1/2)*e^(1/2)/x 
)/c/d^(1/2)/(c^2*d+e)^(1/2)/(1-1/c^2/x^2)^(1/2))/d^(3/2)/(c^2*d+e)^(1/2)-1 
/4*b*arctanh((c^2*d+(-d)^(1/2)*e^(1/2)/x)/c/d^(1/2)/(c^2*d+e)^(1/2)/(1-1/c 
^2/x^2)^(1/2))/d^(3/2)/(c^2*d+e)^(1/2)
 
3.2.2.2 Mathematica [A] (warning: unable to verify)

Time = 1.60 (sec) , antiderivative size = 1239, normalized size of antiderivative = 1.68 \[ \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx =\text {Too large to display} \]

input
Integrate[(a + b*ArcSec[c*x])/(d + e*x^2)^2,x]
 
output
((a*x)/(d^2 + d*e*x^2) + (a*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(d^(3/2)*Sqrt[e]) 
 + (b*((Sqrt[d]*ArcSec[c*x])/((-I)*Sqrt[d]*Sqrt[e] + e*x) + (Sqrt[d]*ArcSe 
c[c*x])/(I*Sqrt[d]*Sqrt[e] + e*x) - (4*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt 
[d])]/Sqrt[2]]*ArcTan[(((-I)*c*Sqrt[d] + Sqrt[e])*Tan[ArcSec[c*x]/2])/Sqrt 
[c^2*d + e]])/Sqrt[e] + (4*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2 
]]*ArcTan[((I*c*Sqrt[d] + Sqrt[e])*Tan[ArcSec[c*x]/2])/Sqrt[c^2*d + e]])/S 
qrt[e] - (I*ArcSec[c*x]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d + e])*E^(I*ArcSec 
[c*x]))/(c*Sqrt[d])])/Sqrt[e] - ((2*I)*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt 
[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/( 
c*Sqrt[d])])/Sqrt[e] + (I*ArcSec[c*x]*Log[1 + (I*(-Sqrt[e] + Sqrt[c^2*d + 
e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])])/Sqrt[e] + ((2*I)*ArcSin[Sqrt[1 - (I*S 
qrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(-Sqrt[e] + Sqrt[c^2*d + e])*E^(I 
*ArcSec[c*x]))/(c*Sqrt[d])])/Sqrt[e] + (I*ArcSec[c*x]*Log[1 - (I*(Sqrt[e] 
+ Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])])/Sqrt[e] - ((2*I)*ArcSi 
n[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 - (I*(Sqrt[e] + Sqrt[c^ 
2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])])/Sqrt[e] - (I*ArcSec[c*x]*Log[1 
+ (I*(Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])])/Sqrt[e] 
+ ((2*I)*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(Sqr 
t[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])])/Sqrt[e] + (I*Log[ 
(2*Sqrt[d]*Sqrt[e]*(Sqrt[e] + c*(I*c*Sqrt[d] - Sqrt[-(c^2*d) - e]*Sqrt[...
 
3.2.2.3 Rubi [A] (verified)

Time = 2.63 (sec) , antiderivative size = 795, normalized size of antiderivative = 1.08, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {5753, 5233, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 5753

\(\displaystyle -\int \frac {a+b \arccos \left (\frac {1}{c x}\right )}{\left (\frac {d}{x^2}+e\right )^2 x^2}d\frac {1}{x}\)

\(\Big \downarrow \) 5233

\(\displaystyle -\int \left (\frac {a+b \arccos \left (\frac {1}{c x}\right )}{d \left (\frac {d}{x^2}+e\right )}-\frac {e \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{d \left (\frac {d}{x^2}+e\right )^2}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\log \left (1-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right ) \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {\log \left (\frac {\sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )} c}{\sqrt {e}-\sqrt {d c^2+e}}+1\right ) \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {\log \left (1-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right ) \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {\log \left (\frac {\sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )} c}{\sqrt {e}+\sqrt {d c^2+e}}+1\right ) \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {a+b \arccos \left (\frac {1}{c x}\right )}{4 d \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}+\frac {a+b \arccos \left (\frac {1}{c x}\right )}{4 d \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )}-\frac {b \text {arctanh}\left (\frac {c^2 d-\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {d c^2+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{4 d^{3/2} \sqrt {d c^2+e}}-\frac {b \text {arctanh}\left (\frac {d c^2+\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {d c^2+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{4 d^{3/2} \sqrt {d c^2+e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}\)

input
Int[(a + b*ArcSec[c*x])/(d + e*x^2)^2,x]
 
output
-1/4*(a + b*ArcCos[1/(c*x)])/(d*(Sqrt[-d]*Sqrt[e] - d/x)) + (a + b*ArcCos[ 
1/(c*x)])/(4*d*(Sqrt[-d]*Sqrt[e] + d/x)) - (b*ArcTanh[(c^2*d - (Sqrt[-d]*S 
qrt[e])/x)/(c*Sqrt[d]*Sqrt[c^2*d + e]*Sqrt[1 - 1/(c^2*x^2)])])/(4*d^(3/2)* 
Sqrt[c^2*d + e]) - (b*ArcTanh[(c^2*d + (Sqrt[-d]*Sqrt[e])/x)/(c*Sqrt[d]*Sq 
rt[c^2*d + e]*Sqrt[1 - 1/(c^2*x^2)])])/(4*d^(3/2)*Sqrt[c^2*d + e]) - ((a + 
 b*ArcCos[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - 
Sqrt[c^2*d + e])])/(4*(-d)^(3/2)*Sqrt[e]) + ((a + b*ArcCos[1/(c*x)])*Log[1 
 + (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(4*(-d 
)^(3/2)*Sqrt[e]) - ((a + b*ArcCos[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^(I*ArcCo 
s[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(4*(-d)^(3/2)*Sqrt[e]) + ((a + 
b*ArcCos[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] + S 
qrt[c^2*d + e])])/(4*(-d)^(3/2)*Sqrt[e]) - ((I/4)*b*PolyLog[2, -((c*Sqrt[- 
d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e]))])/((-d)^(3/2)*Sqrt[ 
e]) + ((I/4)*b*PolyLog[2, (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sq 
rt[c^2*d + e])])/((-d)^(3/2)*Sqrt[e]) - ((I/4)*b*PolyLog[2, -((c*Sqrt[-d]* 
E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e]))])/((-d)^(3/2)*Sqrt[e]) 
 + ((I/4)*b*PolyLog[2, (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] + Sqrt[ 
c^2*d + e])])/((-d)^(3/2)*Sqrt[e])
 

3.2.2.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5233
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCos[c*x])^n, ( 
f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d + 
 e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 5753
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_.), 
x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcCos[x/c])^n/x^(2*(p + 1))) 
, x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && IntegerQ[p]
 
3.2.2.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 45.23 (sec) , antiderivative size = 840, normalized size of antiderivative = 1.14

method result size
parts \(\frac {a x}{2 d \left (e \,x^{2}+d \right )}+\frac {a \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{2 d \sqrt {d e}}+\frac {b \left (\frac {c^{3} \operatorname {arcsec}\left (c x \right ) x}{2 d \left (c^{2} e \,x^{2}+c^{2} d \right )}+\frac {i c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\textit {\_R1} \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 d}+\frac {i \sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 d^{4} c^{3}}-\frac {i \sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (-\sqrt {e \left (c^{2} d +e \right )}\, c^{2} d +2 c^{2} d e -2 \sqrt {e \left (c^{2} d +e \right )}\, e +2 e^{2}\right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 d^{4} \left (c^{2} d +e \right ) c^{3}}+\frac {i \sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 d^{4} c^{3}}-\frac {i \sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (\sqrt {e \left (c^{2} d +e \right )}\, c^{2} d +2 c^{2} d e +2 \sqrt {e \left (c^{2} d +e \right )}\, e +2 e^{2}\right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 d^{4} \left (c^{2} d +e \right ) c^{3}}-\frac {i c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{4 d}\right )}{c}\) \(840\)
derivativedivides \(\frac {\frac {a \,c^{3} x}{2 d \left (c^{2} e \,x^{2}+c^{2} d \right )}+\frac {a c \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{2 d \sqrt {d e}}+b \,c^{4} \left (\frac {\operatorname {arcsec}\left (c x \right ) x}{2 c d \left (c^{2} e \,x^{2}+c^{2} d \right )}+\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\textit {\_R1} \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 c^{2} d}+\frac {i \sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 c^{7} d^{4}}-\frac {i \sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (-\sqrt {e \left (c^{2} d +e \right )}\, c^{2} d +2 c^{2} d e -2 \sqrt {e \left (c^{2} d +e \right )}\, e +2 e^{2}\right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 c^{7} d^{4} \left (c^{2} d +e \right )}+\frac {i \sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 c^{7} d^{4}}-\frac {i \sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (\sqrt {e \left (c^{2} d +e \right )}\, c^{2} d +2 c^{2} d e +2 \sqrt {e \left (c^{2} d +e \right )}\, e +2 e^{2}\right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 c^{7} d^{4} \left (c^{2} d +e \right )}-\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{4 c^{2} d}\right )}{c}\) \(855\)
default \(\frac {\frac {a \,c^{3} x}{2 d \left (c^{2} e \,x^{2}+c^{2} d \right )}+\frac {a c \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{2 d \sqrt {d e}}+b \,c^{4} \left (\frac {\operatorname {arcsec}\left (c x \right ) x}{2 c d \left (c^{2} e \,x^{2}+c^{2} d \right )}+\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\textit {\_R1} \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 c^{2} d}+\frac {i \sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 c^{7} d^{4}}-\frac {i \sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (-\sqrt {e \left (c^{2} d +e \right )}\, c^{2} d +2 c^{2} d e -2 \sqrt {e \left (c^{2} d +e \right )}\, e +2 e^{2}\right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 c^{7} d^{4} \left (c^{2} d +e \right )}+\frac {i \sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 c^{7} d^{4}}-\frac {i \sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (\sqrt {e \left (c^{2} d +e \right )}\, c^{2} d +2 c^{2} d e +2 \sqrt {e \left (c^{2} d +e \right )}\, e +2 e^{2}\right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 c^{7} d^{4} \left (c^{2} d +e \right )}-\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{4 c^{2} d}\right )}{c}\) \(855\)

input
int((a+b*arcsec(c*x))/(e*x^2+d)^2,x,method=_RETURNVERBOSE)
 
output
1/2*a*x/d/(e*x^2+d)+1/2*a/d/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))+b/c*(1/2*c 
^3*arcsec(c*x)*x/d/(c^2*e*x^2+c^2*d)+1/4*I/d*c^2*sum(_R1/(_R1^2*c^2*d+c^2* 
d+2*e)*(I*arcsec(c*x)*ln((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1 
-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z 
^2+c^2*d))+1/2*I*((c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2)*(c^2*d-2*(e*( 
c^2*d+e))^(1/2)+2*e)*arctan(c*d*(1/c/x+I*(1-1/c^2/x^2)^(1/2))/((c^2*d+2*(e 
*(c^2*d+e))^(1/2)+2*e)*d)^(1/2))/d^4/c^3-1/2*I*((c^2*d+2*(e*(c^2*d+e))^(1/ 
2)+2*e)*d)^(1/2)*(-(e*(c^2*d+e))^(1/2)*c^2*d+2*c^2*d*e-2*(e*(c^2*d+e))^(1/ 
2)*e+2*e^2)*arctan(c*d*(1/c/x+I*(1-1/c^2/x^2)^(1/2))/((c^2*d+2*(e*(c^2*d+e 
))^(1/2)+2*e)*d)^(1/2))/d^4/(c^2*d+e)/c^3+1/2*I*(-(c^2*d-2*(e*(c^2*d+e))^( 
1/2)+2*e)*d)^(1/2)*(c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*arctanh(c*d*(1/c/x+I* 
(1-1/c^2/x^2)^(1/2))/((-c^2*d+2*(e*(c^2*d+e))^(1/2)-2*e)*d)^(1/2))/d^4/c^3 
-1/2*I*(-(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2)*((e*(c^2*d+e))^(1/2)*c 
^2*d+2*c^2*d*e+2*(e*(c^2*d+e))^(1/2)*e+2*e^2)*arctanh(c*d*(1/c/x+I*(1-1/c^ 
2/x^2)^(1/2))/((-c^2*d+2*(e*(c^2*d+e))^(1/2)-2*e)*d)^(1/2))/d^4/(c^2*d+e)/ 
c^3-1/4*I/d*c^2*sum(1/_R1/(_R1^2*c^2*d+c^2*d+2*e)*(I*arcsec(c*x)*ln((_R1-1 
/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_ 
R1)),_R1=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d)))
 
3.2.2.5 Fricas [F]

\[ \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx=\int { \frac {b \operatorname {arcsec}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate((a+b*arcsec(c*x))/(e*x^2+d)^2,x, algorithm="fricas")
 
output
integral((b*arcsec(c*x) + a)/(e^2*x^4 + 2*d*e*x^2 + d^2), x)
 
3.2.2.6 Sympy [F]

\[ \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx=\int \frac {a + b \operatorname {asec}{\left (c x \right )}}{\left (d + e x^{2}\right )^{2}}\, dx \]

input
integrate((a+b*asec(c*x))/(e*x**2+d)**2,x)
 
output
Integral((a + b*asec(c*x))/(d + e*x**2)**2, x)
 
3.2.2.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+b*arcsec(c*x))/(e*x^2+d)^2,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.2.2.8 Giac [F(-2)]

Exception generated. \[ \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((a+b*arcsec(c*x))/(e*x^2+d)^2,x, algorithm="giac")
 
output
Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
 
3.2.2.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx=\int \frac {a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )}{{\left (e\,x^2+d\right )}^2} \,d x \]

input
int((a + b*acos(1/(c*x)))/(d + e*x^2)^2,x)
 
output
int((a + b*acos(1/(c*x)))/(d + e*x^2)^2, x)